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Abstract: A notable stereoinduction accompanies the 1,2-addition of nueleophiles to a cyclic N-acyl- 
hydrazonium ion. 

Recently, we noted that the diene 1 showed an excellent diastereofacial reactivity towards a range of 

acyclic t and cyclic aza dienophiles. 2 For example, it reacted with 4-phenyl-1,2,4-triazoline-3,5-dione to give 

the cycioadduct 2, isolated in 70% yield after crystallisation. 2 As part of an exploration of the synthetic utility 

of such cycloadducts, we sought to generate the conjugated N-acyihydrazonium ion 3 3 from the cycloadduct 2 

and to define its reactivity. We hoped that the intermediate 3 would undergo interception by nucleophiles in a 

regio- and stereo-selective manner, 4 in preference to experiencing loss of a proton (to give 4). We now report 

findings that justify this expectation. 
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When treated overnight with triethylsilane and trifluoroacetic acid 5 in dichloromethane, the cycloadduct 

2 was transformed into a 1:1 mixture of compound 5 and the tetra-acetate 6. The mixture was stirred in 

methanol contmning p-toluenesulfonic acid (to convert 6 into D-glucose) and the product was partitioned 

between dichloromethane and water. Work-up of the organic phase gave compound 56 (67% yield after 

crystallisationT), m.p. 105-107 *C, [C~]D -398 (c 0.2, CH2C12). IH NMR Spectroscopy left little doubt that the 

product was represented by the structure indicated rather than its regioisomer 7. Evidently, assuming that a 

kineticalls' controlled reaction is in~ol~cd, the conjugated N-acylhydrazonlum ion 3 undergoes a highly 

regioselective reduction. 
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Compound 2 underwent reaction with trimethylsilyl cyanide and BF3.OEt28 in dichloromethane at 0 *C 

(5 h) to give a mixture of the nitrile 8 and the tetra-acetate 6. After treatment of the mixture with methanol 

containing p-toluenesulfonic acid, the nitrile 89 (63% yield after crystallisationT), m.p. 166-168 *C, [a]D -536 

(c 0.28, CH2C!2), was isolated. That the nitrile $ possessed the tram-configuration, rather than the c/s- 

configuration, was deduced from its reaction with hot methanolic hydrochloric acid. The diester, which could 

only be obtained (in low yield) when a small-scale reaction was employed, was optically active {[Ct]D--468 (c 

0.07, CH2C12)}, indicating that it possessed the trans-geometry 9.10 

In dichloromethane containing allyltrimethylsilane and trifluoroacetic acid, 11 compound 2 was 

transformed overnight into mainly a 1:1 mixture of the allyl derivative 10 and the tetra-acetate 6. After the 

usual work-up with acidic methanol and subjection of the product to silica-gel chromatography, the allyl 

derivative 1012 was obtained in 66% yield (47% after crystallisation), m.p. 132-133 *C, [et]D --489 (c 0.44, 

CH2C!2). Chromatography was unnecessary when BF3.OEt2 was used in place of trifluoroacetic acid in the 

aUylation reaction. Methanolysis (MeOH, p-TsOH) of the product then gave compound 10 in 88% yield (56% 

after crystaUisation). 13 The tram-geometry of compound 10 was inferred by analogy with the configuration of 

the nitrile 8, an inference that was supported by the large negative optical rotations of both compounds {by 

contrast, the cycloadduct 2 showed let] D +13 (c 0.5, CH2C12)2}. 

In the presence of methanol and p-toluenesulfonic acid, the cycioadduct 2 was converted overnight into 

the methoxy derivative 1114 (64% yield after crystallisationlS), m.p. 155-157 *C, [Ct]D -399 (c 0.21, CH2C12). 

Again, the trans-configuration of compound 11 was inferred by analogy with that of the nitrile 8 and supported 

by the large negative optical rotation of the compound. 

That the integrity of the stereogenic centre adjacent to the methoxycarbonyl group had not been 

compromised in either the 2--*5 or the 2---11 transformation was suggested by the finding that compound 11 

underwent reduction (Et3SiH, CF3CO2H, CH2C12) to give compound 5 (79% yield after crystallisation), m.p. 

104-106 *C, [et]D -389 (c 0.6, CH2C12). 
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In principle, the inversion of configuration observed in the formation of compounds 8, 10 and 11 from 

the precursor 2 might be attributed to an SN2-1ike reaction pathway, rather than an ionisation process leading to 
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the species 3. To shed some light on the situation, it was decided to prepare the trans-cycloadduct 14 and to 

examine the stereochemical outcome of analogous reactions. 

The synthesis of the trans-cycloadduct 14 from the propenal 1216 is outlined in Scheme 1. Thus, the 

propenal 12 underwent a highly (Z)-selective olefination using the Still protocol 17 to give a 94:6 mixture of the 

dienes 13 and 1. The diene 13 (36% yield after chromatography and crystallisation), m.p. 141-143 *C, [Ct]D 

-12 (c 0.5, CH2Ci2), reacted with 4-phenyl-l,2,4-triazoline-3,5-dione in boiling toluene to give the trans- 

cycloadduct 1418 (53% yield after crystallisation), m.p. 197-199 *C, [Ot]D +210 (c 0.3, CH2C12). 
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Scheme 1 

The trans-cycloadduct 14 underwent reduction (CF3CO2H, Et3SiH, CH2C12) to give compound enant-5 

(50% yield after crystailisationT), m.p. 109-111 *C, [or] D +382 (c 0.3, CH2CI2), allylation (CF3CO2H, 

CH2:CHCH2SiMe3, CH2C12) to give compound enant-lO (54% yield after crystallisation7), m.p. 135-137 *C, 

[a]D +482 (c 0.47, CH2C12), and methanolysis (MeOH, p-TsOH) to give compound enant-11 (53% yield after 

crystallisationlS), m.p. 153-155 °C, [Ct]D +384 (c 0.3, CH2C12). 

Since the formation of compounds 8, 10 and 11 from the precursor 2 had occurred with an inversion of 

configuration at the reaction centre whereas the formation of compounds enant - lO and enant-ll  from the 

precursor 14 had taken place with a retention of configuration at the reaction centre, we consider that a 

common ionisation process is implicated in both series of reactions. Clearly, the conjugated N-acyl- 

hydrazonium ions 3 and enant-3 intervene in the reactions emanating from the cycloadducts 2 and 14, 

respectively. Certainly in the case of the C-nucleophiles and probably in the case of H- and O-nucleophiles, 

there is a strong kinetic preference for attack of the conjugated N-acylhydrazonium ion to occur in a 1,2- rather 

than a 1,4-manner and anti with respect to the methoxycarbonyl group. 

The aforecited results are of both synthetic and mechanistic interest. In the former context, they 

illustrate a simple means of effecting the reductive removal or stereoselective replacement of the sugar 

auxiliary from the cycloadducts 2 and 14. As well as providing access to enantiomerically related products, the 

technology offers considerable potential for the synthesis of novel a-amino acids. In a mechanistic connection, 

the results reveal that the conjugated N-acylhydrazonium ion 3 displays a high degree of regio- and stereo- 

selectivity with respect to nucleophilic attack. The notable 1,4-stereoinduction is surprising and its origin 

remains to be determined. 
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